Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox regulation of protein damage in plasma.

Identifieur interne : 000614 ( Main/Exploration ); précédent : 000613; suivant : 000615

Redox regulation of protein damage in plasma.

Auteurs : Helen R. Griffiths [Royaume-Uni] ; Irundika H K. Dias [Royaume-Uni] ; Rachel S. Willetts [Royaume-Uni] ; Andrew Devitt [Royaume-Uni]

Source :

RBID : pubmed:24624332

Descripteurs français

English descriptors

Abstract

The presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However, advances in analytical techniques using mass spectrometry and immuno-affinity purification methods, have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific sites is now being characterised. The damaging reactive species that cause protein modifications in plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase (MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be caused by oxidized lipids and glucose autooxidation. In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites.

DOI: 10.1016/j.redox.2014.01.010
PubMed: 24624332
PubMed Central: PMC3949090


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox regulation of protein damage in plasma.</title>
<author>
<name sortKey="Griffiths, Helen R" sort="Griffiths, Helen R" uniqKey="Griffiths H" first="Helen R" last="Griffiths">Helen R. Griffiths</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET</wicri:regionArea>
<wicri:noRegion>Birmingham B4 7ET</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dias, Irundika H K" sort="Dias, Irundika H K" uniqKey="Dias I" first="Irundika H K" last="Dias">Irundika H K. Dias</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET</wicri:regionArea>
<wicri:noRegion>Birmingham B4 7ET</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Willetts, Rachel S" sort="Willetts, Rachel S" uniqKey="Willetts R" first="Rachel S" last="Willetts">Rachel S. Willetts</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET</wicri:regionArea>
<wicri:noRegion>Birmingham B4 7ET</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Devitt, Andrew" sort="Devitt, Andrew" uniqKey="Devitt A" first="Andrew" last="Devitt">Andrew Devitt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET</wicri:regionArea>
<wicri:noRegion>Birmingham B4 7ET</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24624332</idno>
<idno type="pmid">24624332</idno>
<idno type="doi">10.1016/j.redox.2014.01.010</idno>
<idno type="pmc">PMC3949090</idno>
<idno type="wicri:Area/Main/Corpus">000641</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000641</idno>
<idno type="wicri:Area/Main/Curation">000641</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000641</idno>
<idno type="wicri:Area/Main/Exploration">000641</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox regulation of protein damage in plasma.</title>
<author>
<name sortKey="Griffiths, Helen R" sort="Griffiths, Helen R" uniqKey="Griffiths H" first="Helen R" last="Griffiths">Helen R. Griffiths</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET</wicri:regionArea>
<wicri:noRegion>Birmingham B4 7ET</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dias, Irundika H K" sort="Dias, Irundika H K" uniqKey="Dias I" first="Irundika H K" last="Dias">Irundika H K. Dias</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET</wicri:regionArea>
<wicri:noRegion>Birmingham B4 7ET</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Willetts, Rachel S" sort="Willetts, Rachel S" uniqKey="Willetts R" first="Rachel S" last="Willetts">Rachel S. Willetts</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET</wicri:regionArea>
<wicri:noRegion>Birmingham B4 7ET</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Devitt, Andrew" sort="Devitt, Andrew" uniqKey="Devitt A" first="Andrew" last="Devitt">Andrew Devitt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET</wicri:regionArea>
<wicri:noRegion>Birmingham B4 7ET</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="ISSN">2213-2317</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (blood)</term>
<term>Animals (MeSH)</term>
<term>Blood Proteins (metabolism)</term>
<term>Endoplasmic Reticulum (MeSH)</term>
<term>Glycosylation (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Kupffer Cells (physiology)</term>
<term>Lipoxygenase (metabolism)</term>
<term>NADPH Oxidases (MeSH)</term>
<term>Nitric Oxide Synthase (metabolism)</term>
<term>Nitrosation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Oxidoreductases (blood)</term>
<term>Peroxidase (metabolism)</term>
<term>Peroxiredoxins (metabolism)</term>
<term>Protein Isoforms (metabolism)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Reactive Nitrogen Species (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
<term>Xanthine Oxidase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules de Küpffer (physiologie)</term>
<term>Espèces réactives de l'azote (métabolisme)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glycosylation (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Isoformes de protéines (métabolisme)</term>
<term>Lipoxygenase (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Myeloperoxidase (métabolisme)</term>
<term>NADPH oxidase (MeSH)</term>
<term>Nitric oxide synthase (métabolisme)</term>
<term>Nitrosation (MeSH)</term>
<term>Oxidoreductases (sang)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxirédoxines (métabolisme)</term>
<term>Protéines du sang (métabolisme)</term>
<term>Réticulum endoplasmique (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Vieillissement (sang)</term>
<term>Xanthine oxidase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Blood Proteins</term>
<term>Lipoxygenase</term>
<term>Nitric Oxide Synthase</term>
<term>Peroxidase</term>
<term>Peroxiredoxins</term>
<term>Protein Isoforms</term>
<term>Reactive Nitrogen Species</term>
<term>Reactive Oxygen Species</term>
<term>Thioredoxins</term>
<term>Xanthine Oxidase</term>
</keywords>
<keywords scheme="MESH" qualifier="blood" xml:lang="en">
<term>Aging</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'azote</term>
<term>Espèces réactives de l'oxygène</term>
<term>Isoformes de protéines</term>
<term>Lipoxygenase</term>
<term>Myeloperoxidase</term>
<term>Nitric oxide synthase</term>
<term>Peroxirédoxines</term>
<term>Protéines du sang</term>
<term>Thiorédoxines</term>
<term>Xanthine oxidase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cellules de Küpffer</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Kupffer Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Oxidoreductases</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Endoplasmic Reticulum</term>
<term>Glycosylation</term>
<term>Humans</term>
<term>NADPH Oxidases</term>
<term>Nitrosation</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Protein Processing, Post-Translational</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Glycosylation</term>
<term>Humains</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>NADPH oxidase</term>
<term>Nitrosation</term>
<term>Oxydoréduction</term>
<term>Réticulum endoplasmique</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However, advances in analytical techniques using mass spectrometry and immuno-affinity purification methods, have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific sites is now being characterised. The damaging reactive species that cause protein modifications in plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase (MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be caused by oxidized lipids and glucose autooxidation. In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24624332</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2213-2317</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox regulation of protein damage in plasma.</ArticleTitle>
<Pagination>
<MedlinePgn>430-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2014.01.010</ELocationID>
<Abstract>
<AbstractText>The presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However, advances in analytical techniques using mass spectrometry and immuno-affinity purification methods, have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific sites is now being characterised. The damaging reactive species that cause protein modifications in plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase (MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be caused by oxidized lipids and glucose autooxidation. In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Griffiths</LastName>
<ForeName>Helen R</ForeName>
<Initials>HR</Initials>
<AffiliationInfo>
<Affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dias</LastName>
<ForeName>Irundika H K</ForeName>
<Initials>IH</Initials>
<AffiliationInfo>
<Affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Willetts</LastName>
<ForeName>Rachel S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Devitt</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001798">Blood Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026361">Reactive Nitrogen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.7</RegistryNumber>
<NameOfSubstance UI="D009195">Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.13.11.12</RegistryNumber>
<NameOfSubstance UI="D008084">Lipoxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.13.39</RegistryNumber>
<NameOfSubstance UI="D019001">Nitric Oxide Synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.3.2</RegistryNumber>
<NameOfSubstance UI="D014969">Xanthine Oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D019255">NADPH Oxidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001798" MajorTopicYN="N">Blood Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007728" MajorTopicYN="N">Kupffer Cells</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008084" MajorTopicYN="N">Lipoxygenase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019255" MajorTopicYN="N">NADPH Oxidases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019001" MajorTopicYN="N">Nitric Oxide Synthase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015538" MajorTopicYN="N">Nitrosation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009195" MajorTopicYN="N">Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026361" MajorTopicYN="N">Reactive Nitrogen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014969" MajorTopicYN="N">Xanthine Oxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ageing</Keyword>
<Keyword MajorTopicYN="N">BH4, tetrahydrobiopterin</Keyword>
<Keyword MajorTopicYN="N">COX, cyclo-oxygenase</Keyword>
<Keyword MajorTopicYN="N">CRP, C-reactive protein</Keyword>
<Keyword MajorTopicYN="N">ER, endoplasmic reticulum</Keyword>
<Keyword MajorTopicYN="N">ERO1, endoplasmic reticulum oxidoreductin 1</Keyword>
<Keyword MajorTopicYN="N">EV, extracellular vesicles</Keyword>
<Keyword MajorTopicYN="N">FX1, factor XI</Keyword>
<Keyword MajorTopicYN="N">GPI, glycoprotein 1</Keyword>
<Keyword MajorTopicYN="N">GPX, glutathione peroxidase</Keyword>
<Keyword MajorTopicYN="N">GRX, glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">GSH, glutathione</Keyword>
<Keyword MajorTopicYN="N">Glycosylation</Keyword>
<Keyword MajorTopicYN="N">MIRNA, microRNA</Keyword>
<Keyword MajorTopicYN="N">MPO, myeloperoxidase</Keyword>
<Keyword MajorTopicYN="N">NO, nitric oxide</Keyword>
<Keyword MajorTopicYN="N">NOS, nitric oxide synthase</Keyword>
<Keyword MajorTopicYN="N">NOX, NADPH oxidase</Keyword>
<Keyword MajorTopicYN="N">Nitration</Keyword>
<Keyword MajorTopicYN="N">O2•−, superoxide anion radical</Keyword>
<Keyword MajorTopicYN="N">ONOO-, peroxynitrite</Keyword>
<Keyword MajorTopicYN="N">Oxidation</Keyword>
<Keyword MajorTopicYN="N">PDI, protein disulphide isomerase</Keyword>
<Keyword MajorTopicYN="N">Peroxiredoxin</Keyword>
<Keyword MajorTopicYN="N">Prx, peroxiredoxin</Keyword>
<Keyword MajorTopicYN="N">RNS, reactive nitrogen species</Keyword>
<Keyword MajorTopicYN="N">ROS, reactive nitrogen species</Keyword>
<Keyword MajorTopicYN="N">Thioredoxin</Keyword>
<Keyword MajorTopicYN="N">Trx, thioredoxin</Keyword>
<Keyword MajorTopicYN="N">VWF, von Willebrand factor</Keyword>
<Keyword MajorTopicYN="N">XO, xanthine oxidase</Keyword>
</KeywordList>
<GeneralNote Owner="NLM">Original DateCompleted: 20140624</GeneralNote>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24624332</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2014.01.010</ArticleId>
<ArticleId IdType="pii">S2213-2317(14)00025-1</ArticleId>
<ArticleId IdType="pmc">PMC3949090</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Glycoconj J. 2009 Dec;26(9):1151-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care Med. 2004 Mar;32(3):818-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15090968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2012 Oct 22;3:298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23093949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 1981 Mar;42(3):401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6162783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 1997 Aug;17(8):1591-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9301640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Nov 1;47(9):1239-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(6):e66407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23826097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 Apr;286(1):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1897941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2005 Aug-Sep;40(8-9):650-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Jan 15;48(2):275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19879942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Dec 25;390(4):1272-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19878651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6712-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23977830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Sep 25;268(27):20598-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8397210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 May 31;288(22):15699-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23592792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Feb 24;287(9):6375-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22219194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Periodontol. 2011 Oct;38(10):894-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21883360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 31;279(53):55341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(12):e15353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2013;1:226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24024156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Dev Immunol. 2012;2012:785627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2011 Feb 25;406(3):503-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21215271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thromb Res. 2010 Apr;125 Suppl 1:S38-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20163832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Autoimmun. 2012 Sep;39(3):121-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Immunol. 1992 Jun;88(3):420-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1606725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Oct 11;288(41):29586-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23979138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jan 20;18(3):250-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22657737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Cent J. 2013 Sep 05;7(1):150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24007191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2009 Oct;86(4):989-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19564574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jul 25;321(5888):569-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Nov 15;53(10):1942-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22982597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 Apr;275(8):1813-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2012 Jan;2(1):110036</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Mar 15;52(6):1075-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22248862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2009 Jun;41(6):1269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Apr 15;188(8):4103-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22430737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2000 Nov;33 Suppl:S47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11191275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2010 Apr;59(4):1038-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20068133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jun;10(6):1101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18373437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Jul 1;43(1):90-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17561097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H193-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Apr 1;42(7):909-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17349919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2012 Apr;24(4):873-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22182514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2008 Apr;49(4):847-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2009 Jan;50(1):71-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2004 Nov;287(5):R1014-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15475499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Immunol. 2013;33(1):57-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23627007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8796-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18250164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autoimmun Rev. 2008 Jul;7(7):544-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2000 Aug-Sep;37(12-13):697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11275255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2011 Oct;39(5):1273-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21936801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22558190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 May 1;20(13):2074-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2011 Dec;10(6):1056-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21951615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2012 Feb;56(2):246-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2002 Feb-Jun;23(1-3):101-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12079771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Jun 25;582(15):2195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18501711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Thromb Haemost. 2010 Aug;8(8):1754-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1996 Nov 22;52(10):1499-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8937463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2012 Nov;12(21):3147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1989 Mar 13;245(1-2):95-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2538368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Aug 15;15(4):1043-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21294649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Sep 24;285(39):29874-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20562109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Thromb Hemost. 2013 Feb;39(1):40-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2007 Aug;148(8):3850-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17478559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chim Acta. 2010 Jul 4;411(13-14):972-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20307520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jan;10(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17939758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1823(2):306-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22178385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Feb 1;288(5):3346-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23223577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 3;283(40):27038-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18622039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2011 Oct;90(4):799-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21791598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2011 Sep;36(9):485-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21778060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Jul 1;53(1):20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacology. 2012;89(5-6):283-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22538733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Nov 19;27(22):2977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18833192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Oct 6;29(19):3318-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Jun 15;428(3):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 28;278(48):47562-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12968020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Dec 5;267(34):24161-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1332947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 24;287(35):29290-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22773830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Thromb Haemost. 2012 Feb;10(2):278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22168334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1273-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Griffiths, Helen R" sort="Griffiths, Helen R" uniqKey="Griffiths H" first="Helen R" last="Griffiths">Helen R. Griffiths</name>
</noRegion>
<name sortKey="Devitt, Andrew" sort="Devitt, Andrew" uniqKey="Devitt A" first="Andrew" last="Devitt">Andrew Devitt</name>
<name sortKey="Dias, Irundika H K" sort="Dias, Irundika H K" uniqKey="Dias I" first="Irundika H K" last="Dias">Irundika H K. Dias</name>
<name sortKey="Willetts, Rachel S" sort="Willetts, Rachel S" uniqKey="Willetts R" first="Rachel S" last="Willetts">Rachel S. Willetts</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000614 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000614 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24624332
   |texte=   Redox regulation of protein damage in plasma.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24624332" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020